Parametric and non-parametric estimate of bivariate survival functions: the copula approach

نویسنده

  • Silvia Angela Osmetti
چکیده

In this paper we discuss the problem on parametric and non parametric estimation of the distributions generated by the Marshall-Olkin copula. This copula comes from the Marshall-Olkin bivariate exponential distribution used in reliability analysis. Through this copula we can extend the Marshall-Olkin distribution in order to construct several bivariate survival functions. The cumulative distribution functions of these distributions are not absolute continuous functions and they unknown parameters are often not be obtained in explicit form. In particular we consider the IFM method to find the Marshall-Olkin copula estimator, presenting the copula likelihood function. We compare this procedure with a non parametric estimator of the copula, the bivariate empirical copula, used to evaluate the copula goodness of fit. The estimate procedures described are verified through several simulation. One data-set is analyzed for a illustrative purpose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Information Measures via Copula Functions

In applications of differential geometry to problems of parametric inference, the notion of divergence is often used to measure the separation between two parametric densities. Among them, in this paper, we will verify measures such as Kullback-Leibler information, J-divergence, Hellinger distance, -Divergence, … and so on. Properties and results related to distance between probability d...

متن کامل

Semi-Supervised Domain Adaptation with Non-Parametric Copulas

A new framework based on the theory of copulas is proposed to address semisupervised domain adaptation problems. The presented method factorizes any multivariate density into a product of marginal distributions and bivariate copula functions. Therefore, changes in each of these factors can be detected and corrected to adapt a density model accross different learning domains. Importantly, we int...

متن کامل

Parameter estimation of a bivariate compound Poisson process

In this article, we review the concept of a Lévy copula to describe the dependence structure of a bivariate compound Poisson process. In this first statistical approach we consider a parametric model for the Lévy copula and estimate the parameters of the full dependent model based on a maximum likelihood approach. This approach ensures that the estimated model remains in the class of multivaria...

متن کامل

Dependence Tree Structure Estimation via Copula

We propose an approach for dependence tree structure learning via copula. A nonparametric algorithm for copula estimation is presented. Then a Chow-Liu like method based on dependence measure via copula is proposed to estimate maximum spanning bivariate copula associated with bivariate dependence relations. The main advantage of the approach is that learning with empirical copula focuses on dep...

متن کامل

Three-stage semi-parametric estimation of T-copulas: Asymptotics, finite-sample properties and computational aspects

Genest et al. (1995) proposed a two-stages semi-parametric estimation procedure for bivariate Archimedean copulas. A three stage semi-parametric estimation method based on Kendall’s tau has been recently proposed in the financial literature to estimate the Student’s T copula, too. Its major advantage is to allow for greater computational tractability when dealing with high dimensional issues, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010